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Two gammaherpesviruses are known to infect humans.
Both are predominantly latent. Both were first discovered
in tumor specimens and both carry one or more trans-
forming genes. They are the Epstein-Barr virus (EBV) and
the Kaposi’s sarcoma herpesvirus (KSHV), also known as
human herpesvirus 8. First discovered in association with
endemic Burkitt’s lymphoma, EBV is the etiological agent
of infectious mononucleosis and has a long-recognized
association with nasopharyngeal carcinoma and post-
transplant lymphoproliferative disease.1–4 More recent
but well established associations include a subset of
Hodgkin’s disease,5–7 nasal lymphoma,8 smooth muscle
tumors in immunocompromised patients,9,10 a subset of
gastric carcinoma,11,12 AIDS primary central nervous
system lymphoma,13 a subset of other AIDS lymphomas,
and a subset of peripheral T cell lymphomas.2,14 Less
well established associations have recently been re-
ported in hepatocellular and breast carcinomas.15–17

KSHV was first discovered in Kaposi’s sarcoma in AIDS
patients but has also proven to be associated with all
other epidemiological forms of Kaposi’s sarcoma.18 The
virus is also associated with primary effusion lymphoma
and a subset of Castleman’s disease.19–21 An associa-
tion with multiple myeloma has been reported but re-
mains a subject of contention.22

Whereas human papillomaviruses and human T-cell
leukemia virus type 1 (HTLV1) are found integrated into
cellular DNA in tumors, the gammaherpesviruses gener-
ally persist as episomes in tumor cells. The episomes,
although tethered to cellular chromatin by viral encoded
nuclear proteins, are not continuous with cellular DNA.
Present evidence suggests that EBV episomes are lost
when there is no selective pressure for their maintenance.
Episomal maintenance has been studied in tissue culture
with recombinant plasmids and in tumor-derived cell
lines. In tissue culture, human cells expressing the Ep-
stein-Barr nuclear antigen-1 (EBNA1) protein will repli-
cate recombinant bacterial plasmids containing an EBV
origin of latency replication once with each cell cy-
cle.23,24 If the plasmid carries an antibiotic resistance

gene, the plasmid will be stably maintained in the pres-
ence of antibiotic selection. However, in the absence of
antibiotic selection, a percentage of cells will lose the
plasmid with each generation, and ultimately the cultured
cells will be plasmid-free. Similarly, it has been shown in
a Burkitt’s lymphoma-derived cell line (Akata) that after
cloning in soft agar, some clones will lack the viral epi-
some.25 These clones grow more slowly, are less resis-
tant to apoptosis, and are not tumorigenic in nude mice,
in contrast to the parent cell line. In bulk culture, Akata
cells that have lost episomes are presumably simply
overgrown by cells that retain their episomes and thus
have a growth advantage. Loss of episomes in some
other Burkitt’s cell lines has not been associated with loss
of a malignant phenotype.26 One possibility is that in
some tumors, chromosomal translocations and point mu-
tations have supplanted EBV as a driving force for pro-
liferation or resistance to apoptosis, whereas in others
EBV remains essential to the malignant phenotype. In this
regard, it might be noted that the typical chromosomal
breakpoints associated with endemic and non-endemic
Burkitt’s lymphoma differ somewhat at a molecular lev-
el.27 Although Burkitt’s cell lines typically retain their epi-
somes in tissue culture, other tumors may consistently
lose their episomes in culture. Thus, undifferentiated na-
sopharyngeal carcinoma is an epithelial cell tumor con-
sistently associated with EBV. In tissue culture, nasopha-
ryngeal carcinoma cell lines typically lack viral episomes.
We have recently investigated this phenomenon in the
NPC-C666 cell line and have shown that episomal loss
corresponds to activation of lytic cycle viral expression
with consequent shutoff of transcription of the EBNA1
protein required for episomal maintenance.28 Kaposi’s
sarcoma cell lines in tissue culture also lose viral epi-
somes, although the molecular biology underlying this
loss has not yet been studied.

It has recently been shown that in some cases of
episome loss from Burkitt’s lines in tissue culture, frag-
ments of the EBV genome are incorporated into cellular
DNA.26 Furthermore, in a series of non-endemic Burkitt’s
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lymphomas, similar fragments of the EBV genome were
found in tumors that by standard criteria would be
classed as virus-negative by EBER in situ hybridization or
EBNA1 immunohistochemistry insofar as these parts of
the genome were not retained.29 Thus, EBV may play a
role in endemic and sporadic Burkitt’s lymphoma, as
recently proposed by John Sixbey at the Stohlman
Scholar Symposium of the Leukemia Society of America
(November 12–13, 1999, New York City). He argued that
a rare subclone of proliferating cells that has spontane-
ously lost EBV at some point after tumor initiation but is
now capable of sustaining virus-independent growth may
have a survival advantage through avoidance of immune
surveillance. Thus, in geographic regions where Burkitt’s
lymphoma occurs only sporadically (in populations with
good nutrition and presumed vigorous immune surveil-
lance), the tumor is a rare malignancy and is for the most
part EBV-negative, whereas in other areas, among pop-
ulations with malnutrition, chronic parasitic infection, and
impaired immune surveillance, Burkitt’s lymphoma is
much more common and is predominantly EBV-positive.

The possible role of EBV in Hodgkin’s disease has
tantalized epidemiologists, virologists, and clinicians for
several decades. The variation of the bimodal age inci-
dence curve of Hodgkin’s disease with the level of eco-
nomic development suggests that the incidence of the
disease in children and young adults is related to age of
infection with a common virus.30 Case control studies
suggested that factors in the childhood environment that
influenced timing of exposure to infection also influenced
the risk of Hodgkin’s disease.31 Small family size and low
housing density, which might be associated with delayed
exposure to infection by a ubiquitous infectious agent,
predicted an increased risk of Hodgkin’s disease. The
development of Hodgkin’s disease after late or delayed
exposure to a virus was specifically likened to the para-
lytic consequences of poliovirus infection, which followed
the infection more commonly when it occurred in later
adolescence or adulthood rather than in infancy or child-
hood. The idea that EBV infection per se rather than
another ubiquitous agent might be linked specifically to
Hodgkin’s disease was supported by several sorts of
observations. Seroepidemiological studies that showed
that antibody titers to EBV antigens were elevated in
Hodgkin’s disease patients both at the time of diagnosis
and several years in anticipation of diagnosis.32 A history
of infectious mononucleosis was associated with about a
threefold increase of risk for young adult Hodgkin’s dis-
ease.33,34 In case reports, Hodgkin’s disease developed
in close association with primary EBV infection.35

The whole picture appeared to be internally consistent
when monoclonal EBV genomes were found in the Reed-
Sternberg cells of Hodgkin’s disease in a subset of pa-
tients.7,36–39 However, the story has not been quite so
neat as might have been hoped. The distribution of EBV-
positive Hodgkin’s disease cases is almost an inverse
image of that predicted by the epidemiological data.
Among young adult cases, where the poliovirus hypoth-
esis is most relevant, EBV positivity in tumor tissue is
generally lowest.6,40 The association of Hodgkin’s dis-
ease with EBV is highest in underdeveloped countries,

children, and the aged. The whole picture might be uni-
fied by an extension of Sixbey’s hypothesis as generated
to explain the Burkitt’s lymphoma data. EBV might be an
important cofactor for Hodgkin’s disease in general, but
the viral episome might be lost from malignant cells,
where tumor progression had rendered the viral episome
unnecessary for survival, and in patients with relatively
intact immune systems, where the presence of the viral
episome and expression of associated viral antigens ren-
dered the tumor susceptible to immune surveillance.

This was presumably the thinking that led Staratschek-
Jox and colleagues to apply an in situ hybridization tech-
nique to apparently EBV-negative tumors to Hodgkin’s
disease in search of fragments of the viral genome.41 The
methods applied are state of the art, and the answer
appears to be clear. In contrast to the report of viral DNA
fragments in sporadic Burkitt’s lymphoma, no fragments
of the viral genome were detected in the cases of
Hodgkin’s they studied. If the virus is involved in the
pathogenesis of these EBV-negative cases, it seems to
have made a clean escape, not leaving behind any DNA
evidence for the lab to investigate further. Studies of
Burkitt’s, nasopharyngeal carcinoma, and Kaposi’s sar-
coma cell lines suggest that such clean escapes are
possible; thus, a “hit-and-run” role for EBV or KSHV in
many diseases cannot be excluded. The challenge now
is to devise investigative strategies that might lead to the
conclusive identification of hit-and-run perpetrators or to
exclude them definitively. The difficulty in devising such
strategies has for the most part stopped investigators in
the field from discussing the possibility of gammaherpes-
virus hit-and-run oncogenesis in print, but the idea has
led to many late-night discussions at scientific meetings.
Developing strategies to prove or exclude hit-and-run
oncogenesis associated with episomal loss remains an
interesting challenge.
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